Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.777
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 103(18): e38023, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701310

RESUMO

Cancer remains a significant challenge in the field of oncology, with the search for novel and effective treatments ongoing. Calycosin (CA), a phytoestrogen derived from traditional Chinese medicine, has garnered attention as a promising candidate. With its high targeting and low toxicity profile, CA has demonstrated medicinal potential across various diseases, including cancers, inflammation, and cardiovascular disease. Studies have revealed that CA possesses inhibitory effects against a diverse array of cancers. The underlying mechanism of action involves a reduction in tumor cell proliferation, induction of tumor cell apoptosis, and suppression of tumor cell migration and invasion. Furthermore, CA has been shown to enhance the efficacy of certain chemotherapeutic drugs, making it a potential component in treating malignant tumors. Given its high efficacy, low toxicity, and multi-targeting characteristics, CA holds considerable promise as a therapeutic agent for cancer treatment. The objective of this review is to present a synthesis of the current understanding of the antitumor mechanism of CA and its research progress.


Assuntos
Isoflavonas , Neoplasias , Fitoestrógenos , Isoflavonas/uso terapêutico , Isoflavonas/farmacologia , Humanos , Fitoestrógenos/uso terapêutico , Fitoestrógenos/farmacologia , Neoplasias/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia
2.
Endocr Res ; 49(2): 106-116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597376

RESUMO

BACKGROUND: Phytoestrogens have been praised for their beneficial health effects, whereas synthetic xenoestrogens have been connected to ailments. AIMS: To ascertain whether the toxicities of natural and synthetic estrogens differ, we examined the potent phytoestrogen 8-prenylnaringenin (8-PN), the common synthetic xenoestrogen tartrazine, and the physiological estrogen 17ß-estradiol (E2). METHODS: These three compounds were tested for cytotoxicity, cell proliferation and genotoxicity in human HepG2 and rat H4IIE hepatoma cells. RESULTS: All three estrogens elicited cytotoxicity at high concentrations in both cell lines. They also inhibited cell proliferation, with E2 being the most effective. They all tended to increase micronuclei formation. CONCLUSION: Natural estrogens were no less toxic than a synthetic one.


Assuntos
Proliferação de Células , Estradiol , Flavanonas , Tartrazina , Humanos , Animais , Ratos , Estradiol/farmacologia , Flavanonas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Tartrazina/farmacologia , Carcinoma Hepatocelular , Neoplasias Hepáticas/induzido quimicamente , Células Hep G2 , Estrogênios/farmacologia , Congêneres do Estradiol/farmacologia , Fitoestrógenos/farmacologia
3.
Molecules ; 29(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474467

RESUMO

Isoflavones, belonging to polyphenolic compounds, show structural similarity to natural estrogens, and in this context, they have been extensively studied. Some of them are also applied as cosmetic additives; however, little is known regarding their effects on skin cells. In this investigation, common isoflavones, including genistein, daidzein, glycitein, formononetin, and biochanin A, as well as coumestrol, were evaluated for antioxidant activity and their impact on human skin fibroblasts and keratinocytes. Antioxidant effects were assessed using DPPH, ABTS, and FRAP tests, and the ability to scavenge reactive oxygen species (ROS) was tested in cells with H2O2-provoked oxidative stress. The impact on the activity of antioxidant enzymes (SOD, CAT, GSH) and lipid peroxidation (MDA) was also explored. As shown by Alamar Blue and neutral red uptake assays, the compounds were not toxic within the tested concentration range, and formononetin and coumestrol even demonstrated a stimulatory effect on cells. Coumestrol and biochanin A demonstrated significant antioxidative potential, leading to a significant decrease in ROS in the cells stimulated by H2O2. Furthermore, they influenced enzyme activity, preventing depletion during induced oxidative stress, and also reduced MDA levels, demonstrating protection against lipid peroxidation. In turn, genistein, daidzein, and glycitein exhibited low antioxidant capacity.


Assuntos
Genisteína , Isoflavonas , Humanos , Genisteína/farmacologia , Cumestrol , Espécies Reativas de Oxigênio , Fitoestrógenos , Antioxidantes , Peróxido de Hidrogênio , Isoflavonas/química , Estresse Oxidativo , Queratinócitos , Fibroblastos
4.
BMJ Open Respir Res ; 11(1)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38448045

RESUMO

BACKGROUND: The role of phytoestrogens in asthma/wheeze and lung function remains controversial. Thus, we aimed to examine whether phytoestrogens have beneficial effects on asthma/wheeze, lung function for subgroups and mortality. METHODS: Participants in this study were individuals aged 20 years or older from the National Health and Nutrition Examination Survey. Multivariate logistic regression models were fitted to examine the associations of urinary phytoestrogens with the risk of asthma/wheeze and lung function in individuals with and without asthma/wheeze. Cox proportional hazards regression was used to examine the relationship between urinary phytoestrogens and all-cause mortality. Stratified analyses were conducted based on gender and smoking status. RESULTS: We included 2465 individuals in this study. Enterolactone levels in the highest quartile were associated with a lower risk of asthma than those in the lowest quartile. As compared with the lowest quartile, the highest quartile of enterodiol and enterolactone was associated with a lower risk of wheeze. Significant associations were observed between subtypes of phytoestrogens (equol and enterolactone) and lung function (forced vital capacity (FVC) and forced expiratory volume in 1 s). Besides, FVC was higher in individuals with higher levels of enterodiol. The results were consistent in subpopulations without asthma/wheeze, while the significant difference was not observed in individuals with asthma/wheeze. The stratified analyses revealed that the associations between phytoestrogens and lung function differed by gender and smoking status among subgroups. No significant association was found between urinary phytoestrogens and all-cause mortality. CONCLUSION: In summary, subtypes of phytoestrogens were associated with lower risk of asthma/wheeze and beneficial for lung function improvement in individuals without asthma/wheeze. Furthermore, gender and smoking may interact in the relationship between phytoestrogens and asthma/wheeze, and lung function. Further researches are needed to confirm these associations and explain the results of stratified analyses.


Assuntos
4-Butirolactona/análogos & derivados , Asma , Lignanas , Fitoestrógenos , Humanos , Estudos Transversais , Inquéritos Nutricionais , Fumar/epidemiologia , Asma/epidemiologia , Volume Expiratório Forçado , Pulmão
5.
Endocr J ; 71(4): 317-333, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38346749

RESUMO

Soybean is a source of protein, fibers, and phytochemical isoflavones which are considered to have numerous health benefits for children and adulthood. On the other hand, isoflavones are widely known as phytoestrogens that exert their action via the estrogen signaling pathway. With this regard, isoflavones are also considered as endocrine-disrupting chemicals. Endogenous estrogen plays a crucial role in brain development through binding to estrogen receptors (ERs) or G protein-coupled estrogen receptors 1 (GPER1) and regulates morphogenesis, migration, functional maturation, and intracellular metabolism of neurons and glial cells. Soy isoflavones can also bind to ERs, GPER1, and, furthermore, other receptors to modulate their action. Therefore, soy isoflavone consumption may affect brain development during the pre-and post-natal periods. This review summarizes the current knowledge on the mechanisms of isoflavone action, particularly in the early stages of brain development by introducing representative human, and animal models, and in vitro studies, and discusses their beneficial and adverse impact on neurobehavior. As a conclusion, the soy product consumption during the pre-and post-natal periods under proper range of dose showed beneficial effects in neurobehavior development, including improvement of anxiety, aggression, hyperactive behavior, and cognition, whereas their adverse effect by taking higher doses cannot be excluded. We also present novel research lines to further assess the effect of soy isoflavone administration during brain development.


Assuntos
Encéfalo , Glycine max , Isoflavonas , Transdução de Sinais , Isoflavonas/farmacologia , Humanos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Animais , Glycine max/química , Fitoestrógenos/farmacologia , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo
6.
Mol Nutr Food Res ; 68(6): e2300688, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342595

RESUMO

The human gut microbiota regulates estrogen metabolism through the "estrobolome," the collection of bacterial genes that encode enzymes like ß-glucuronidases and ß-glucosidases. These enzymes deconjugate and reactivate estrogen, influencing circulating levels. The estrobolome mediates the enterohepatic circulation and bioavailability of estrogen. Alterations in gut microbiota composition and estrobolome function have been associated with estrogen-related diseases like breast cancer, enometrial cancer, and polycystic ovarian syndrome (PCOS). This is likely due to dysregulated estrogen signaling partly contributed by the microbial impacts on estrogen metabolism. Dietary phytoestrogens also undergo bacterial metabolism into active metabolites like equol, which binds estrogen receptors and exhibits higher estrogenic potency than its precursor daidzein. However, the ability to produce equol varies across populations, depending on the presence of specific gut microbes. Characterizing the estrobolome and equol-producing genes across populations can provide microbiome-based biomarkers. Further research is needed to investigate specific components of the estrobolome, phytoestrogen-microbiota interactions, and mechanisms linking dysbiosis to estrogen-related pathology. However, current evidence suggests that the gut microbiota is an integral regulator of estrogen status with clinical relevance to women's health and hormonal disorders.


Assuntos
Neoplasias da Mama , Microbioma Gastrointestinal , Feminino , Humanos , Fitoestrógenos , Microbioma Gastrointestinal/fisiologia , Equol/metabolismo , Estrogênios/metabolismo , Neoplasias da Mama/metabolismo
7.
Chem Biol Drug Des ; 103(1): e14353, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722967

RESUMO

The increased prevalence of neurological illnesses is a burgeoning challenge to the public healthcare system and presents greater financial pressure. Formononetin, an O-methylated isoflavone, has gained a lot of attention due to its neuroprotective potential explored in several investigations. Formononetin is widely found in legumes and several types of clovers including Trifolium pratense L., Astragalus membranaceus, Sophora tomentosa, etc. Formononetin modulates various endogenous mediators to confer neuroprotection. It prevents RAGE activation that results in the inhibition of neuronal damage via downregulating the level of ROS and proinflammatory cytokines. Furthermore, formononetin also increases the expression of ADAM-10, which affects the pathology of neurodegenerative disease by lowering tau phosphorylation, maintaining synaptic plasticity, and boosting hippocampus neurogenesis. Besides these, formononetin also increases the expression of antioxidants, Nrf-2, PI3K, ApoJ, and LRP1. Whereas, reduces the expression of p65-NF-κB and proinflammatory cytokines. It also inhibits the deposition of Aß and MAO-B activity. An inhibition of Aß/RAGE-induced activation of MAPK and NOX governs the protection elicited by formononetin against inflammatory and oxidative stress-induced neuronal damage. Besides this, PI3K/Akt and ER-α-mediated activation of ADAM10, ApoJ/LRP1-mediated clearance of Aß, and MAO-B inhibition-mediated preservation of dopaminergic neurons integrity are the major modulations produced by formononetin. This review covers the biosynthesis of formononetin and key molecular pathways modulated by formononetin to confer neuroprotection.


Assuntos
Isoflavonas , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Fitoestrógenos , Neuroproteção , Fosfatidilinositol 3-Quinases/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Linhagem Celular Tumoral , Isoflavonas/farmacologia , Citocinas , Monoaminoxidase , Fármacos Neuroprotetores/farmacologia
8.
Biomed Chromatogr ; 38(3): e5810, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38146195

RESUMO

Erythrina bidwillii Lindl., Leguminosae, constitutes a valuable crop for horticulture and medicine; however, it is rarely investigated. Menopause is a crucial transitional period in women's health. Women worldwide consider the use of phytoestrogens as a safe hormone replacement therapy to alleviate detrimental menopausal symptoms. Thus, the discovery of novel phytoestrogens is highly demanded. The present study aimed to investigate, for the first time, the metabolomic profile and the estrogenic potential of E. bidwillii Lindl. leaf. Ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry and gas chromatography-mass spectrometry metabolite profiling revealed the prevalence of alkaloids, flavonoids, isoflavonoids and fatty acids. Additionally, five erythrinan alkaloids, cristanine A (1), 8-oxoerythraline (2), (+)-erythrinine (3), (+)-erythraline (4) and 8-oxoerythrinine (5), along with the isoflavonoid genistin (6), were isolated. Erythrina bidwillii leaf extract exhibited significant in vivo estrogenic, anti-osteoporotic, anti-hyperlipidemic, hepatoprotective, and nephroprotective activities, utilizing ovariectomized rat model. Moreover, ethyl acetate and hexane fractions possessed significant in vitro estrogeic potential on MCF-7 cell lines. An in silico study of the isolated metabolites revealed that (+)-erythrinine (3) and 8-oxoerythrinine (5) exhibited the highest affinity for ERα and ERß, respectively, modeling them as potential estrogenic lead metabolites. Therefore, E. bidwillii leaf could be employed as promising hormone replacement therapy for postmenopausal women after thorough clinical trials.


Assuntos
Alcaloides , Erythrina , Feminino , Humanos , Ratos , Animais , Fitoestrógenos/química , Erythrina/química , Alcaloides/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células MCF-7
9.
Food Funct ; 14(24): 10681-10699, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38047630

RESUMO

Estrogen receptors (ERs) are transcription factors with two subtypes: estrogen receptor alpha (ERα) and estrogen receptor beta (ERß), which are essential for the maintenance of human health and play a regulatory role in common diseases such as breast cancer, osteoporosis, neurodegenerative disorders, liver injuries and lung cancers. A number of phytochemicals extracted from various fruits and vegetables have been demonstrated to exhibit estrogenic effects and are termed phytoestrogens. As modulators of ERs, phytoestrogens can be involved in the prevention and treatment of multiple diseases as complementary or alternative therapeutic agents and have a variety of health benefits for humans. This article reviews the health benefits of phytoestrogens in clinical and epidemiologic studies for several diseases and also provides a detailed description of the molecular mechanisms of their action. A brief comparison of the advantages and disadvantages of natural phytochemicals compared to synthetic drugs is also presented. The role of phytoestrogens in the treatment of diseases and human health requires further research to fully realize their therapeutic potential.


Assuntos
Fitoestrógenos , Receptores de Estrogênio , Humanos , Fitoestrógenos/farmacologia , Fitoestrógenos/uso terapêutico , Estrogênios , Receptor beta de Estrogênio/genética , Receptor alfa de Estrogênio , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
10.
Physiol Res ; 72(S4): S411-S422, 2023 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-38116777

RESUMO

Endocrine disruptors (EDs) are ubiquitous substances both in the environment and everyday products that interfere with the hormonal system. Growing evidence demonstrates their adverse effects on the organism, including the reproductive system and the prostate, owing to their (anti)estrogenic or antiandrogenic effects. Since EDs can interact with steroid hormone actions on-site, understanding the levels of intraprostatic EDs in conjunction with steroids may hold particular significance. The aim of this study was to develop and validate a method for determining estrogens, various groups of EDs (bisphenols, parabens, oxybenzone and nonylphenol) and phytoestrogens in their unconjugated and conjugated forms in prostate tissue by liquid chromatography-tandem mass spectrometry, and subsequently analyze 20 human prostate tissue samples. The method enabled 20 compounds to be analyzed: estrogens (estrone, estradiol, estriol), bisphenols (bisphenol A- BPA, BPS, BPF, BPAF, BPAP, BPZ, BPP), parabens (methyl-, ethyl-, propyl-, butyl-, benzyl- paraben), oxybenzone, nonylphenol and phytoestrogens (daidzein, genistein, equol) with LLOQs between 0.017-2.86 pg/mg of tissue. The most frequently detected EDs in prostate tissues were propylparaben (conjugated and unconjugated forms in 100 % of tissues), methylparaben (unconjugated in 45 % and conjugated in 100 %), ethylparaben (unconjugated in 25 % and conjugated in 100 % BPA (unconjugated in 35 % and conjugated in 60 % and oxybenzone (both forms in 45 % To the best of our knowledge, this is the first study detecting EDs, phytoestrogens and estriol conjugate (E3C) in the prostate. E3C was the most abundant estrogen in prostatic tissue. This highlights the need for further explorations into estrogen metabolism within the prostate.


Assuntos
Disruptores Endócrinos , Estrogênios , Masculino , Humanos , Parabenos , Próstata/química , Fitoestrógenos , Estriol , Compostos Benzidrílicos
11.
Nutrients ; 15(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38140273

RESUMO

Phytoestrogens are non-steroidal plant compounds, which bind to α and ß estrogen receptors, thereby causing specific effects. The best-known group of phytoestrogens are flavonoids, including isoflavonoids-genistein and daidzein. They play a role in the metabolism of bone tissue, improving its density and preventing bone loss, which contributes to reducing the risk of fractures. Vitamin D is found in the form of cholecalciferol (vitamin D3) and ergocalciferol (vitamin D2) and is traditionally recognized as a regulator of bone metabolism. The aim of this review was to evaluate the synergistic effect of isoflavonoids and vitamin D on bone mineral density (BMD). The MEDLINE (PubMed), Scopus and Cochrane databases were searched independently by two authors. The search strategy included controlled vocabulary and keywords. Reference publications did not provide consistent data regarding the synergistic effect of isoflavonoids on BMD. Some studies demonstrated a positive synergistic effect of these compounds, whereas in others, the authors did not observe any significant differences. Therefore, further research on the synergism of isoflavonoids and vitamin D may contribute to a significant progress in the prevention and treatment of osteoporosis.


Assuntos
Densidade Óssea , Vitamina D , Vitamina D/farmacologia , Fitoestrógenos/farmacologia , Vitaminas/farmacologia , Colecalciferol/farmacologia
12.
Biomed Pharmacother ; 169: 115783, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37944439

RESUMO

Nuclear receptors (NRs) represent intracellular proteins that function as a signaling network of transcriptional factors to control genes in response to a variety of environmental, dietary, and hormonal stimulations or serve as orphan receptors lacking a recognized ligand. They also play an essential role in normal development, metabolism, cell growth, cell division, physiology, reproduction, and homeostasis and function as biological markers for tumor subclassification and as targets for hormone therapy. NRs, including steroid hormone receptors (SHRs), have been studied as tools to examine the fundamentals of transcriptional regulation within the development of mammals and human physiology, in addition to their links to disturbances. In this regard, it is widely recognized that aberrant NR signaling is responsible for the pathological growth of hormone-dependent tumors in response to SHRs dysregulation and consequently represents a potential therapeutic candidate in a range of diseases, as in the case of prostate cancer and breast cancer. On the other hand, phytosterols are a group of plant-derived compounds that act directly as ligands for NRs and have proven their efficacy in the management of diabetes, heart diseases, and cancers. However, these plants are not suggested in cases of hormone-dependent cancer since a certain group of plants contains molecules with a chemical structure similar to that of estrogens, which are known as phytoestrogens or estrogen-like compounds, such as lignans, coumestans, and isoflavones. Therefore, it remains an open and controversial debate regarding whether consuming a phytosterol-rich diet and adopting a vegetarian lifestyle like the Mediterranean diet may increase the risk of developing steroid hormone-dependent cancers by constitutively activating SHRs and thereby leading to tumor transformation. Overall, the purpose of this review is to better understand the relevant mechanistic pathways and explore epidemiological investigations in order to establish that phytosterols may contribute to the activation of NRs as cancer drivers in hormone-dependent cancers.


Assuntos
Neoplasias da Mama , Fitosteróis , Receptores de Esteroides , Animais , Humanos , Masculino , Estrogênios/metabolismo , Mamíferos , Fitoestrógenos , Receptores Citoplasmáticos e Nucleares , Receptores de Esteroides/química , Receptores de Esteroides/fisiologia , Esteroides
13.
Molecules ; 28(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37959856

RESUMO

Genistein is a natural compound belonging to flavonoids, having antioxidant, anti-inflammatory, and anti-neoplastic properties. Genistein is considered a phytoestrogen. As such, genistein can bind estrogen receptors (ERα and ERß), although with a lower affinity than that of estradiol. Despite considerable work, the effects of genistein are not well established yet. This review aims to clarify the role of genistein on female and male reproductive functions in mammals. In females, at a high dose, genistein diminishes the ovarian activity regulating several pathway molecules, such as topoisomerase isoform I and II, protein tyrosine kinases (v-src, Mek-4, ABL, PKC, Syk, EGFR, FGFR), ABC, CFTR, Glut1, Glut4, 5α-reductase, PPAR-γ, mitogen-activated protein kinase A, protein histidine kinase, and recently circulating RNA-miRNA. The effect of genistein on pregnancy is still controversial. In males, genistein exerts an estrogenic effect by inducing testosterone biosynthesis. The interaction of genistein with both natural and synthetic endocrine disruptors has a negative effect on testis function. The positive effect of genistein on sperm quality is still in debate. In conclusion, genistein has a potentially beneficial effect on the mechanisms regulating the reproduction of females and males. However, this is dependent on the dose, the species, the route, and the time of administration.


Assuntos
Genisteína , Sêmen , Gravidez , Animais , Masculino , Feminino , Genisteína/farmacologia , Sêmen/metabolismo , Fitoestrógenos/farmacologia , Receptores de Estrogênio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Reprodução , Mamíferos/metabolismo
14.
J Equine Vet Sci ; 131: 104958, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925115

RESUMO

Pastures are used for grazing and the production of conserved roughage in horses. Yet, the nutritional profile of the forage varies from spring to late summer, affecting equine nutrient supply and health. In addition, environmental factors may also favor plant contaminants such as mycotoxins. This study aimed to determine the nutritional profile and contaminant load of selected horse pastures from early spring till late summer. The nutrient composition (main macronutrients, macro elements and trace elements), as well as mycotoxins, metabolites, pesticides, and plant-derived compounds of seven horse pastures were analyzed. Each pasture was sampled three times and the samples were categorized according to the status of the pasture plants: ear emergence, early- till full bloom, and drought-damaged vegetation. Drought-damaged pastures demonstrated a rise in the acid to neutral detergent fiber ratio, calcium, iron, and magnesium but lower potassium contents. Mycotoxins and other contaminants were found in the pastures including 64 fungal compounds (ergot alkaloids (13) and metabolites from Fusarium (21), Aspergillus (2), Penicillium (8), Alternaria (8) and other fungal species (12), one bacterial metabolite (cereulide), twelve plant metabolites (including eight phytoestrogens and three cyanogenic glycosides (linamarin, lotaustralin and prunasin)), 11 nonspecific metabolites and six pesticides. Fusarium metabolites showed the highest concentrations among the fungal metabolites and drought-induced stress increased the contamination levels (range: 123-3873 µg/kg DM). In conclusion, there was a dominant effect of the developmental stages of the plants, botanical composition of the pastures and weather conditions on the nutritional composition and presence of contaminants on pastures.


Assuntos
Micotoxinas , Praguicidas , Cavalos , Animais , Micotoxinas/análise , Fitoestrógenos , Áustria , Nutrientes
15.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895016

RESUMO

It has been observed that plasmatic concentrations of estrogens, progesterone, or both correlate with symptoms in asthmatic women. Fluctuations in female sex steroid concentrations during menstrual periods are closely related to asthma symptoms, while menopause induces severe physiological changes that might require hormonal replacement therapy (HRT), that could influence asthma symptoms in these women. Late-onset asthma (LOA) has been categorized as a specific asthmatic phenotype that includes menopausal women and novel research regarding therapeutic alternatives that might provide relief to asthmatic women suffering LOA warrants more thorough and comprehensive analysis. Therefore, the present review proposes phytoestrogens as a promising HRT that might provide these females with relief for both their menopause and asthma symptoms. Besides their well-recognized anti-inflammatory and antioxidant capacities, phytoestrogens activate estrogen receptors and promote mild hormone-like responses that benefit postmenopausal women, particularly asthmatics, constituting therefore a very attractive potential therapy largely due to their low toxicity and scarce side effects.


Assuntos
Asma , Fitoestrógenos , Feminino , Humanos , Fitoestrógenos/uso terapêutico , Terapia de Reposição de Estrogênios , Terapia de Reposição Hormonal , Menopausa/fisiologia , Estrogênios/uso terapêutico , Asma/tratamento farmacológico
16.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686148

RESUMO

Phytoestrogens are plant-derived bioactive compounds with estrogen-like properties. Their potential health benefits, especially in cancer prevention and treatment, have been a subject of considerable research in the past decade. Phytoestrogens exert their effects, at least in part, through interactions with estrogen receptors (ERs), mimicking or inhibiting the actions of natural estrogens. Recently, there has been growing interest in exploring the impact of phytoestrogens on osteosarcoma (OS), a type of bone malignancy that primarily affects children and young adults and is currently presenting limited treatment options. Considering the critical role of the estrogen/ERs axis in bone development and growth, the modulation of ERs has emerged as a highly promising approach in the treatment of OS. This review provides an extensive overview of current literature on the effects of phytoestrogens on human OS models. It delves into the multiple mechanisms through which these molecules regulate the cell cycle, apoptosis, and key pathways implicated in the growth and progression of OS, including ER signaling. Moreover, potential interactions between phytoestrogens and conventional chemotherapy agents commonly used in OS treatment will be examined. Understanding the impact of these compounds in OS holds great promise for developing novel therapeutic approaches that can augment current OS treatment modalities.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Criança , Adulto Jovem , Humanos , Fitoestrógenos/farmacologia , Fitoestrógenos/uso terapêutico , Osteossarcoma/tratamento farmacológico , Apoptose , Estrogênios , Neoplasias Ósseas/tratamento farmacológico
17.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37569571

RESUMO

Phytoestrogens (PEs) are estrogen-like nonsteroidal compounds derived from plants (e.g., nuts, seeds, fruits, and vegetables) and fungi that are structurally similar to 17ß-estradiol. PEs bind to all types of estrogen receptors, including ERα and ERß receptors, nuclear receptors, and a membrane-bound estrogen receptor known as the G protein-coupled estrogen receptor (GPER). As endocrine-disrupting chemicals (EDCs) with pro- or antiestrogenic properties, PEs can potentially disrupt the hormonal regulation of homeostasis, resulting in developmental and reproductive abnormalities. However, a lack of PEs in the diet does not result in the development of deficiency symptoms. To properly assess the benefits and risks associated with the use of a PE-rich diet, it is necessary to distinguish between endocrine disruption (endocrine-mediated adverse effects) and nonspecific effects on the endocrine system. Endometriosis is an estrogen-dependent disease of unknown etiopathogenesis, in which tissue similar to the lining of the uterus (the endometrium) grows outside of the uterus with subsequent complications being manifested as a result of local inflammatory reactions. Endometriosis affects 10-15% of women of reproductive age and is associated with chronic pelvic pain, dysmenorrhea, dyspareunia, and infertility. In this review, the endocrine-disruptive actions of PEs are reviewed in the context of endometriosis to determine whether a PE-rich diet has a positive or negative effect on the risk and course of endometriosis.


Assuntos
Endometriose , Receptores de Estrogênio , Feminino , Humanos , Receptores de Estrogênio/metabolismo , Endometriose/patologia , Fitoestrógenos/efeitos adversos , Dieta/efeitos adversos , Sistema Endócrino/metabolismo
18.
Molecules ; 28(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37570881

RESUMO

Isoflavenes have received the greatest research attention among the many groups of phytoestrogens. In this study, various isoflavene-based Mannich bases were selected for their theoretical studies. The purpose of this research was to discover the binding potential of all the designated Mannich bases acting as inhibitors against cancerous proteins EGFR, cMet, hTrkA, and HER2 (PDB codes: 5GTY, 3RHK, 6PL2, and 7JXH, respectively). For their virtual screening, DFT calculations and molecular docking studies were undertaken using in silico software. Docking studies predicted that ligands 5 and 15 exhibited the highest docking score by forming hydrogen bonds within the active pocket of protein 6PL2, ligands 1 and 15 both with protein 3RHK, and 7JXH, 12, and 17 with protein 5GTY. Rendering to the trends in polarizability and dipole moment, the energy gap values (0.2175 eV, 0.2106 eV) for the firm conformers of Mannich bases (1 and 4) replicate the increase in bioactivity and chemical reactivity. The energy gap values (0.2214 eV and 0.2172 eV) of benzoxazine-substituted isoflavene-based Mannich bases (9 and 10) reflect the increase in chemical potential due to the most stable conformational arrangements. The energy gap values (0.2188 eV and 0.2181 eV) of isoflavenes with tertiary amine-based Mannich bases (14 and 17) reflect the increase in chemical reactivity and bioactivity due to the most stable conformational arrangements. ADME was also employed to explore the pharmacokinetic properties of targeted moieties. This study revealed that these ligands have a strong potential to be used as drugs for cancer treatment.


Assuntos
Bases de Mannich , Fitoestrógenos , Simulação de Acoplamento Molecular , Fitoestrógenos/farmacologia , Bases de Mannich/farmacologia , Bases de Mannich/química , Ligantes
19.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446033

RESUMO

The impact and safety of phytoestrogens, plant-derived isoflavones with estrogenic activity predominantly present in soy, on female reproductive health and IVF outcomes continues to be hotly debated. In this prospective cohort study, 60 women attending IVI-RMA New Jersey undergoing IVF with single frozen embryo transfer (SET/FET) of good-quality euploid blastocyst after PGT-A analysis were recruited. Concentrations of two phytoestrogens (daidzein and genistein) in follicular fluid (FF) and urine (U) were measured by UPLC-MSMS, both collected on vaginal oocyte retrieval day. These measurements correlated with IVF clinical outcomes. In models adjusted for age, BMI, race/ethnicity, and smoking status, higher FF phytoestrogen concentrations were significantly associated with higher serum estradiol, enhanced probability of implantation, clinical pregnancy, and live birth. Moreover, higher urine phytoestrogen concentrations were significantly associated with improved oocyte maturation and fertilization potential and increased probability of clinical pregnancy and live birth. Finally, higher FF and urine phytoestrogen concentrations were associated with a higher probability of live birth from a given IVF cycle. Our results suggest that dietary phytoestrogens improved reproductive outcomes of women undergoing IVF treatment. However, additional prospective studies are needed to optimize the use of phytoestrogens to further enhance reproductive outcomes and/or protect against reproductive insults.


Assuntos
Fertilização in vitro , Fitoestrógenos , Gravidez , Feminino , Humanos , Fertilização in vitro/métodos , Líquido Folicular , Estudos Prospectivos , Transferência Embrionária/métodos , Taxa de Gravidez , Estudos Retrospectivos
20.
Nutrients ; 15(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37447209

RESUMO

Rutin has been reported as a potential anti-cancer agent for several decades. This study evaluated the effects of rutin on the proliferation, metastasis, and angiogenesis of MDA-MB-231 and MCF-7 breast cancer cell lines. Increasing concentrations of rutin significantly stimulated the proliferation of MDA-MB-231 and MCF-7 cells compared to controls. Wound scratch assay demonstrated that rutin had an inducing effect on the migration of the cells. In MDA-MB-231 and MCF-7 cells, rutin upregulated MKI67, VIM, CDH2, FN1, and VEGFA and downregulated CDH1 and THBS1 genes. It also increased N-cadherin and VEGFA and decreased E-cadherin and thrombospondin 1 protein expression. Our data indicated that rutin could stimulate proliferation, migration, and pro-angiogenic activity in two different breast cancer cell lines. This phytoestrogen induced invasion and migration of both cell lines by a mechanism involving the EMT process. This suggests that rutin may act as a breast-cancer-promoting phytoestrogen.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Humanos , Feminino , Células MCF-7 , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fitoestrógenos/farmacologia , Movimento Celular , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA